Black-scholes in a Cev Random Environment: a New Approach to Smile Modelling
نویسنده
چکیده
Classical (Itô diffusions) stochastic volatility models are not able to capture the steepness of smallmaturity implied volatility smiles. Jumps, in particular exponential Lévy and affine models, which exhibit small-maturity exploding smiles, have historically been proposed to remedy this (see [53] for an overview). A recent breakthrough was made by Gatheral, Jaisson and Rosenbaum [27], who proposed to replace the Brownian driver of the instantaneous volatility by a short-memory fractional Brownian motion, which is able to capture the short-maturity steepness while preserving path continuity. We suggest here a different route, randomising the Black-Scholes variance by a CEV-generated distribution, which allows us to modulate the rate of explosion (through the CEV exponent) of the implied volatility for small maturities. The range of rates includes behaviours similar to exponential Lévy models and fractional stochastic volatility models. As a by-product, we make a conjecture on the small-maturity forward smile asymptotics of stochastic volatility models, in exact agreement with the results in [37] for the Heston model.
منابع مشابه
A new approach to using the cubic B-spline functions to solve the Black-Scholes equation
Nowadays, options are common financial derivatives. For this reason, by increase of applications for these financial derivatives, the problem of options pricing is one of the most important economic issues. With the development of stochastic models, the need for randomly computational methods caused the generation of a new field called financial engineering. In the financial engineering the pre...
متن کاملNumerical Solution of Fractional Black Scholes Equation Based on Radial Basis Functions Method
Options pricing have an important role in risk control and risk management. Pricing discussion requires modelling process, solving methods and implementing the model by real data in a given market. In this paper we show a model for underlying asset based on fractional stochastic models which is a particular type of behavior of stochastic assets changing. In addition a numerical method based on ...
متن کاملEuropean option pricing of fractional Black-Scholes model with new Lagrange multipliers
In this paper, a new identification of the Lagrange multipliers by means of the Sumudu transform, is employed to btain a quick and accurate solution to the fractional Black-Scholes equation with the initial condition for a European option pricing problem. Undoubtedly this model is the most well known model for pricing financial derivatives. The fractional derivatives is described in Caputo sen...
متن کاملOn Black-Scholes equation; method of Heir-equations, nonlinear self-adjointness and conservation laws
In this paper, Heir-equations method is applied to investigate nonclassical symmetries and new solutions of the Black-Scholes equation. Nonlinear self-adjointness is proved and infinite number of conservation laws are computed by a new conservation laws theorem.
متن کاملValuing Time-Dependent CEV Barrier Options
We have derived the analytical kernels of the pricing formulae of the CEV knockout options with time-dependent parameters for a parametric class of moving barriers. By a series of similarity transformations and changing variables, we are able to reduce the pricing equation to one which is reducible to the Bessel equation with constant parameters. These results enable us to develop a simple and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015